\square

Question Paper Code : X 20779

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020
 Second Semester
 Civil Engineering
 MA 6251 - MATHEMATICS - II
 (Common to all Branches Except Marine Engineering)
 (Regulations 2013)

Time : Three Hours
Maximum : 100 Marks
Answer ALL questions.
PART - A

1. In what direction from $(3,1,-2)$ is the directional derivative of $\phi=x^{2} y^{2} z^{4}$ maximum ? Find also the magnitude of this maximum.
2. Find α such that $\overrightarrow{\mathrm{F}}=(3 \mathrm{x}-2 \mathrm{y}+\mathrm{z}) \overrightarrow{\mathrm{i}}+(4 \mathrm{x}+\alpha \mathrm{y}-\mathrm{z}) \overrightarrow{\mathrm{j}}+(\mathrm{x}-\mathrm{y}+2 \mathrm{z}) \overrightarrow{\mathrm{k}}$ is solenoidal.
3. Find the particular integral of $\left(D^{2}-4 D\right) y=e^{x} x$.
4. Transform $x^{2} y^{\prime \prime \prime}-3 x y^{\prime \prime}=\frac{\sin (\log x)}{x}$ into a differential equation with constant coefficients.
5. State the sufficient conditions for the existence of Laplace transform.
6. Find the inverse Laplace transform of $\frac{\mathrm{s}}{(\mathrm{s}+2)^{2}}$.
7. Prove that the family of curves $\mathrm{u}=\mathrm{c}, \mathrm{v}=\mathrm{k}$ cuts orthogonally for an analytic function $f(z)=u+i v$.
8. Find the invariant points of a function $f(z)=\frac{z^{3}+7 z}{7-6 z i}$.
9. Evaluate $\int_{\mathrm{C}} \frac{\mathrm{e}^{\mathrm{z}} \mathrm{dz}}{(\mathrm{z}-2)}$, where C is the unit circle with centre as origin.
10. Determine the residue of $f(z)=\frac{z+1}{(z-1)(z+2)}$ at $\mathrm{z}=1$.
11. a) i) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$.
ii) Prove that $\overrightarrow{\mathrm{F}}=\left(y^{2} \cos x+z^{3}\right) \hat{i}+(2 y \sin x-4) \hat{j}+3 x z^{2} \hat{k}$ is irrotational and find its scalar potential.

(OR)

b) i) Find the directional derivative of $\varphi=4 x z^{2}+x^{2} y z$ at $(1,-2,1)$ in the direction of $2 \hat{\mathbf{i}}+3 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$.
ii) Verify Gauss divergence theorem for
$\overrightarrow{\mathrm{F}}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$, where S is the surface of the cube formed by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0$ and $\mathrm{z}=1$.
(OR)
12. a) i) Solve : $\left(D^{2}+2 D+2\right) y=e^{-2 x}+\cos 2 x$.
ii) Using method of variation of parameters, solve $\frac{d^{2} y}{d x^{2}}+y=\sec x$.
(OR)
b) i) Solve: $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$.
ii) Solve the following equations: $\frac{d x}{d t}+2 x+3 y=0 ; 3 x+\frac{d y}{d t}+2 y=2 e^{2 t}$.
13. a) i) Evaluate $: \int_{0}^{\infty} \mathrm{e}^{-\mathrm{t}}\left(\frac{\cos 2 \mathrm{t}-\cos 3 \mathrm{t}}{\mathrm{t}}\right) \mathrm{dt}$.
ii) Apply convolution theorem to evaluate $L^{-1}\left\{\frac{\mathrm{~s}^{2}}{\left(\mathrm{~s}^{2}+4\right)\left(\mathrm{s}^{2}+9\right)}\right\}$.
(OR)
b) i) 1) Find the Laplace transform of $f(t)=t e^{-2 t} \cos 3 t$.
2) Find $L^{-1}\left\{\log \left(\frac{s^{2}+4}{s-2)^{2}}\right)\right\}$.
ii) Using Laplace transform, solve the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dt}^{2}}+3 \frac{\mathrm{dy}}{\mathrm{dt}}+2 \mathrm{y}=\mathrm{e}^{-\mathrm{t}}, \mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0 \tag{6}
\end{equation*}
$$

14. a) i) If $\mathrm{u}=\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{v}=\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}}$, prove that u and v are harmonic functions but $f(z)=u+i v$ is not an analytic function.
ii) Show that the function $u=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is a real part of an analytic function. Also find its conjugate harmonic function v and express $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$ as function of z.
(OR)
b) i) Is $f(z)=z^{n}$ analytic function everywhere?
ii) Find the image of the lines $\mathrm{u}=\mathrm{a}$ and $\mathrm{v}=\mathrm{b}$ in w -plane into z -plane under the transformation $\mathrm{z}=\sqrt{\mathrm{w}}$.
iii) Find the bilinear transformation which maps $\mathrm{I},-\mathrm{i}, 1$ in z -plane into $0,1, \infty$ of the w plane respectively.
15. a) i) Evaluate $\int_{\mathrm{C}} \frac{\tan \frac{\mathrm{Z}}{2}}{(\mathrm{z}-\mathrm{a})^{2}} \mathrm{dz}$, where $-2<\mathrm{a}<2$ and C is the boundary of the square whose sides lie along $\mathrm{x}= \pm 2$ and $\mathrm{y}= \pm 2$.
ii) Evaluate $\int_{-\infty}^{\infty} \frac{\cos \mathrm{xdx}}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)\left(\mathrm{x}^{2}+\mathrm{b}^{2}\right)}$ using contour integration given $\mathrm{a}>\mathrm{b}>0$.
(OR)
b) i) Expand Laurent's series $f(z)=\frac{z}{(z-1)(z-2)}$ valid in $1<|z|<2$ and $|z-1|<1$.
ii) Evaluate $\int_{0}^{2 \pi} \frac{\cos 3 \theta \mathrm{~d} \theta}{5-4 \cos \theta}$.
